使用 saveAsHadoopDataset 写入数据
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}import org.apache.hadoop.hbase.client.{HBaseAdmin, Put, Result}import org.apache.hadoop.hbase.io.ImmutableBytesWritableimport org.apache.hadoop.hbase.mapreduce.TableInputFormat//import org.apache.hadoop.hbase.mapreduce.TableOutputFormatimport org.apache.hadoop.hbase.mapred.TableOutputFormatimport org.apache.hadoop.hbase.util.Bytesimport org.apache.hadoop.mapred.JobConf//import org.apache.hadoop.mapreduce.Jobimport org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSession/** * Created by blockchain on 18-9-9 下午3:45 in Beijing. */object SparkHBaseRDD { def main(args: Array[String]) { // 屏蔽不必要的日志显示在终端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val spark = SparkSession.builder().appName("SparkHBaseRDD").getOrCreate() val sc = spark.sparkContext val tablename = "SparkHBase" val hbaseConf = HBaseConfiguration.create() hbaseConf.set("hbase.zookeeper.quorum","localhost") //设置zooKeeper集群地址,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置 hbaseConf.set("hbase.zookeeper.property.clientPort", "2181") //设置zookeeper连接端口,默认2181 hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tablename) // 初始化job,TableOutputFormat 是 org.apache.hadoop.hbase.mapred 包下的 val jobConf = new JobConf(hbaseConf) jobConf.setOutputFormat(classOf[TableOutputFormat]) val indataRDD = sc.makeRDD(Array("2,jack,16", "1,Lucy,15", "5,mike,17", "3,Lily,14")) val rdd = indataRDD.map(_.split(',')).map{ arr=> /*一个Put对象就是一行记录,在构造方法中指定主键 * 所有插入的数据 须用 org.apache.hadoop.hbase.util.Bytes.toBytes 转换 * Put.addColumn 方法接收三个参数:列族,列名,数据*/ val put = new Put(Bytes.toBytes(arr(0))) put.addColumn(Bytes.toBytes("cf1"),Bytes.toBytes("name"),Bytes.toBytes(arr(1))) put.addColumn(Bytes.toBytes("cf1"),Bytes.toBytes("age"),Bytes.toBytes(arr(2))) (new ImmutableBytesWritable, put) } rdd.saveAsHadoopDataset(jobConf) spark.stop() }}
在 中 查看写入的数据
hbase(main):005:0* scan 'SparkHBase'ROW COLUMN+CELL 1 column=cf1:age, timestamp=1536494344379, value=15 1 column=cf1:name, timestamp=1536494344379, value=Lucy 2 column=cf1:age, timestamp=1536494344380, value=16 2 column=cf1:name, timestamp=1536494344380, value=jack 3 column=cf1:age, timestamp=1536494344379, value=14 3 column=cf1:name, timestamp=1536494344379, value=Lily 5 column=cf1:age, timestamp=1536494344380, value=17 5 column=cf1:name, timestamp=1536494344380, value=mike 4 row(s) in 0.0940 secondshbase(main):006:0>
如上所示,写入成功。
使用 newAPIHadoopRDD 读取数据
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}import org.apache.hadoop.hbase.client.{HBaseAdmin, Put, Result}import org.apache.hadoop.hbase.io.ImmutableBytesWritableimport org.apache.hadoop.hbase.mapreduce.TableInputFormat//import org.apache.hadoop.hbase.mapreduce.TableOutputFormatimport org.apache.hadoop.hbase.mapred.TableOutputFormatimport org.apache.hadoop.hbase.util.Bytesimport org.apache.hadoop.mapred.JobConf//import org.apache.hadoop.mapreduce.Jobimport org.apache.log4j.{Level, Logger}import org.apache.spark.sql.SparkSession/** * Created by blockchain on 18-9-9 下午3:45 in Beijing. */object SparkHBaseRDD { def main(args: Array[String]) { // 屏蔽不必要的日志显示在终端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val spark = SparkSession.builder().appName("SparkHBaseRDD").getOrCreate() val sc = spark.sparkContext val tablename = "SparkHBase" val hbaseConf = HBaseConfiguration.create() hbaseConf.set("hbase.zookeeper.quorum","localhost") //设置zooKeeper集群地址,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置 hbaseConf.set("hbase.zookeeper.property.clientPort", "2181") //设置zookeeper连接端口,默认2181 hbaseConf.set(TableInputFormat.INPUT_TABLE, tablename) // 如果表不存在,则创建表 val admin = new HBaseAdmin(hbaseConf) if (!admin.isTableAvailable(tablename)) { val tableDesc = new HTableDescriptor(TableName.valueOf(tablename)) admin.createTable(tableDesc) } //读取数据并转化成rdd TableInputFormat 是 org.apache.hadoop.hbase.mapreduce 包下的 val hBaseRDD = sc.newAPIHadoopRDD(hbaseConf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result]) hBaseRDD.foreach{ case (_ ,result) => //获取行键 val key = Bytes.toString(result.getRow) //通过列族和列名获取列 val name = Bytes.toString(result.getValue("cf1".getBytes,"name".getBytes)) val age = Bytes.toString(result.getValue("cf1".getBytes,"age".getBytes)) println("Row key:"+key+"\tcf1.Name:"+name+"\tcf1.Age:"+age) } admin.close() spark.stop() }}
输出如下
Row key:1 cf1.Name:Lucy cf1.Age:15Row key:2 cf1.Name:jack cf1.Age:16Row key:3 cf1.Name:Lily cf1.Age:14Row key:5 cf1.Name:mike cf1.Age:17
Spark DataFrame 通过 Phoenix 读写 HBase
友情提示:
部署Maven: 需要添加的依赖如下:
org.apache.phoenix phoenix-core ${phoenix.version} org.apache.phoenix phoenix-spark ${phoenix.version}
下面老规矩,直接上代码。
import org.apache.log4j.{Level, Logger}import org.apache.spark.sql.{SaveMode, SparkSession}/** * Created by blockchain on 18-9-9 下午8:33 in Beijing. */object SparkHBaseDataFrame { def main(args: Array[String]) { // 屏蔽不必要的日志显示在终端上 Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val spark = SparkSession.builder().appName("SparkHBaseDataFrame").getOrCreate() val url = s"jdbc:phoenix:localhost:2181" val dbtable = "PHOENIXTEST" //spark 读取 phoenix 返回 DataFrame 的 第一种方式 val rdf = spark.read .format("jdbc") .option("driver", "org.apache.phoenix.jdbc.PhoenixDriver") .option("url", url) .option("dbtable", dbtable) .load() rdf.printSchema() //spark 读取 phoenix 返回 DataFrame 的 第二种方式 val df = spark.read .format("org.apache.phoenix.spark") .options(Map("table" -> dbtable, "zkUrl" -> url)) .load() df.printSchema() //spark DataFrame 写入 phoenix,需要先建好表 df.write .format("org.apache.phoenix.spark") .mode(SaveMode.Overwrite) .options(Map("table" -> "PHOENIXTESTCOPY", "zkUrl" -> url)) .save() spark.stop() }}
在 中查看写入的数据
0: jdbc:phoenix:localhost:2181> SELECT * FROM PHOENIXTEST ;+-----+----------+| PK | COL1 |+-----+----------+| 1 | Hello || 2 | World || 3 | HBase || 4 | Phoenix |+-----+----------+4 rows selected (0.049 seconds)0: jdbc:phoenix:localhost:2181> 0: jdbc:phoenix:localhost:2181> SELECT * FROM PHOENIXTESTCOPY ;+-----+----------+| PK | COL1 |+-----+----------+| 1 | Hello || 2 | World || 3 | HBase || 4 | Phoenix |+-----+----------+4 rows selected (0.03 seconds)0: jdbc:phoenix:localhost:2181>
如上所示,写入成功。
本文参考链接: